Single Molecules |
|
1 | List |
1 | Folding-unfolding transitions in single titin molecules characterized with laser tweezers MSZ. Kellermayer, (miklos.kellermayerjr@aok.pte.hu )SB. Smith, HL. Granzier, (granzier@wsunix.wsu.edu )C. Bustamante, (carlos@alice.berkeley.edu ) Science (1997-05-16) 276-5315 p.1112 Science publications Publisher : AMER ASSOC ADVANCEMENT SCIENCE, 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA. ISSN : 0036-8075 Abstract : Titin, a giant filamentous polypeptide, is believed to play a fundamental role in maintaining sarcomeric structural integrity and developing what is known as passive force in muscle. Measurements of the force required to stretch a single molecule revealed that titin behaves as a highly nonlinear entropic spring. The molecule unfolds in a high-force transition beginning at 20 to 30 piconewtons and refolds in a low-force transition at similar to 2.5 piconewtons. A fraction of the molecule (5 to 40 percent) remains permanently unfolded, behaving as a wormlike chain with a persistence length (a measure of the chain's bending rigidity) of 20 angstroms. Force hysteresis arises from a difference between the unfolding and refolding kinetics of the molecule relative to the stretch and release rates in the experiments, respectively. Scaling the molecular data up to sarcomeric dimensions reproduced many features of the passive force versus extension curve of muscle fibers. Corresponding Author : Affiliation(s) : (0) WASHINGTON STATE UNIV,DEPT VET COMPARAT ANAT PHARMACOL & PHYSIOL,PULLMAN,WA 99164.; (1) UNIV OREGON,HOWARD HUGHES MED INST,INST MOL BIOL,EUGENE,OR 97403.; Key words : SKELETAL-MUSCLE; STRIATED-MUSCLE; SARCOMERE-LENGTH; PASSIVE TENSION; CARDIAC-MUSCLE; ELASTICITY; FILAMENTS; PROTEIN; FIBRONECTIN; CONNECTIN Type : Article, English. 1997-05-16 Time cited 352; Journal impact factor for year 1997 equals 24.676 [0] BUSTAMANTE C, 1994, SCIENCE, V265, P1599 [1] ERICKSON HP, 1994, P NATL ACAD SCI USA, V91, P10114 [2] FRITZ JD, 1993, COMP BIOCHEM PHYS B, V105, P357 [3] FURST DO, 1988, J CELL BIOL, V106, P1563 [4] GOTO Y, 1982, J MOL BIOL, V156, P911 [5] GRANZIER HL, 1995, BIOPHYS J, V68, P1027 [6] GRANZIER HLM, 1991, AM J PHYSIOL, V260, C1060 [7] GRANZIER HLM, 1993, BIOPHYS J, V65, P2141 [8] HIGUCHI H, 1993, BIOPHYS J, V65, P1906 [9] HOROWITS R, 1986, NATURE, V323, P160 [10] HOROWITS R, 1987, J CELL BIOL, V105, P2217 [11] KIEFHABER T, 1992, J MOL BIOL, V224, P217 [12] KRATKY O, 1949, RECL TRAV CHIM PAY B, V68, P1106 [13] KUHN W, 1942, KOLLOID Z, V101, P248 [14] LABEIT S, 1990, NATURE, V345, P273 [15] LABEIT S, 1992, EMBO J, V11, P1711 [16] LABEIT S, 1995, SCIENCE, V270, P293 [17] LINKE WA, 1996, J MOL BIOL, V261, P62 [18] MAIN AL, 1992, CELL, V71, P671 [19] MARKO JF, 1995, MACROMOLECULES, V28, P8759 [20] MARUYAMA K, 1994, BIOPHYS CHEM, V50, P73 [21] NAVE R, 1989, J CELL BIOL, V109, P2177 [22] PAN KM, 1994, BIOCHEMISTRY-US, V33, P8255 [23] PLAXCO KW, 1996, P NATL ACAD SCI USA, V93, P10703 [24] SMITH SB, UNPUB [25] SMITH SB, 1996, SCIENCE, V271, P795 [26] SOTERIOU A, 1993, P ROY SOC LOND B BIO, V254, P83 [27] TRINICK J, 1984, J MOL BIOL, V180, P331 [28] TROMBITAS K, 1993, J MUSCLE RES CELL M, V14, P416 [29] TSKHOVREBOVA L, 1997, J MOL BIOL, V265, P100 [30] WANG K, 1984, P NATL ACAD SCI-BIOL, V81, P3685 [31] WANG K, 1985, CELL MUSCLE MOTILITY, V6, P315 |
Enter PubMed | Enter ISI Web of Science |