Single Molecules |
|
1 | List |
1 | Tensegrity: The architectural basis of cellular mechanotransduction DE. Ingber, (donald.ingber@childrens.harvard.edu ) Annu. Rev. Physiol. (1997-00-00) 59- p.575 PubMed Publisher : ANNUAL REVIEWS, 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139. ISSN : 0066-4278 Abstract : Physical forces of gravity, hemodynamic stresses, and movement play a critical role in tissue development. Yet, little is known about how cells convert these mechanical signals into a chemical response. This review attempts to place the potential molecular mediators of mechanotransduction (e.g. stretch-sensitive ion channels, signaling molecules, cytoskeleton, integrins) within the context of the structural complexity of living cells. The model presented relies on recent experimental findings, which suggests that cells use tensegrity architecture for their organization. Tensegrity predicts that cells are hard-wired to respond immediately to mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix (e.g. integrins) or to other cells (cadherins, selectins, CAMs). Many signal transducing molecules that are activated by cell binding to growth factors and extracellular matrix associate with cytoskeletal scaffolds within focal adhesion complexes. Mechanical signals, therefore, may be integrated with other environmental signals and transduced into a biochemical response through force-dependent changes in scaffold geometry or molecular mechanics. Tensegrity also provides a mechanism to focus mechanical energy on molecular transducers and to orchestrate and tune the cellular response. Corresponding Author : Ingber, DE, CHILDRENS HOSP,DEPT PATHOL,BOSTON,MA 02115. Affiliation(s) : (0) CHILDRENS HOSP,DEPT SURG,BOSTON,MA 02115.; (1) HARVARD UNIV,SCH MED,BOSTON,MA 02115.; Key words : EXTRACELLULAR-MATRIX; ENDOTHELIAL-CELLS; MECHANOSENSITIVE CHANNELS; ADHESION MOLECULES; MECHANICAL STRAIN; CARDIAC MYOCYTES; PC-12 NEURITES; CYTOSKELETON; FIBROBLASTS; GROWTH mechanoreceptor; cytoskeleton; integrins; signal transduction; extracellular matrix Type : Review, English. 1997-00-00 Time cited 397; Journal impact factor for year 1997 equals 17.386 [0] ALBELDA SM, 1990, FASEB J, V4, P2868 [1] ALON R, 1995, NATURE, V374, P539 [2] BASDRA EK, 1995, BBA-MOL CELL RES, V1268, P209 [3] BASSELL GJ, 1994, J CELL BIOL, V126, P863 [4] BERSHADSKY AD, 1987, CELL MOTIL CYTOSKEL, V8, P274 [5] BUXBAUM RE, 1988, J THEOR BIOL, V134, P379 [6] CHEN BM, 1995, SCIENCE, V269, P1578 [7] DAVIES PF, 1994, J CLIN INVEST, V93, P2031 [8] DAVIES PF, 1995, PHYSIOL REV, V75, P519 [9] DENNERLL TJ, 1988, J CELL BIOL, V107, P665 [10] DING JP, 1993, PLANT J, V3, P83 [11] DU HP, 1996, NEURON, V16, P183 [12] DUNCAN RL, 1995, CALCIFIED TISSUE INT, V57, P344 [13] EZZELL RM, UNPUB J CELL BIOL [14] FELDHERR CM, 1993, EXP CELL RES, V205, P179 [15] FRENCH AS, 1992, ANNU REV PHYSIOL, V54, P135 [16] FUNG YC, 1988, BIOMECHANICS [17] GEIGER B, 1996, IN PRESS ANN ANAT [18] GUMBINER BM, 1993, NEURON, V11, P551 [19] HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, C1 [20] HAMASAKI K, 1995, BIOCHEM BIOPH RES CO, V212, P544 [21] HAMILL OP, 1992, P NATL ACAD SCI USA, V89, P7462 [22] HARRIS AK, 1980, SCIENCE, V208, P177 [23] HE YJ, 1994, J CELL BIOL, V126, P457 [24] HILL TL, 1981, P NATL ACAD SCI USA, V78, P5613 [25] HONG K, 1994, NATURE, V367, P470 [26] INGBER D, 1991, CURR OPIN CELL BIOL, V3, P841 [27] INGBER DE, 1985, GENE EXPRESSION NORM, P13 [28] INGBER DE, 1986, AM J PATHOL, V122, P129 [29] INGBER DE, 1987, IN VITRO CELL DEV B, V23, P387 [30] INGBER DE, 1989, CELL, V58, P803 [31] INGBER DE, 1989, J CELL BIOL, V109, P317 [32] INGBER DE, 1993, CELL, V75, P1249 [33] INGBER DE, 1993, J CELL SCI, V104, P613 [34] INGBER DE, 1994, INT REV CYTOL, V150, P173 [35] INGBER DE, 1995, J BIOMECH, V28, P1471 [36] INGBER DE, 1997, IN PRESS SCI AM [37] JOSHI HC, 1985, J CELL BIOL, V101, P697 [38] KELLER TCS, 1995, CURR OPIN CELL BIOL, V7, P32 [39] KIEFFER JD, 1995, BIOCHEM BIOPH RES CO, V217, P466 [40] KIRSCHNER M, 1986, CELL, V45, P329 [41] KOLODNEY MS, 1992, J CELL BIOL, V117, P73 [42] KUCHAN MJ, 1994, AM J PHYSIOL 1, V267, C753 [43] LAMOUREUX P, 1990, J CELL BIOL, V110, P71 [44] LAUFFENBURGER DA, 1993, RECEPTORS MODELS BIN [45] MALEK AM, 1996, J CELL SCI 4, V109, P713 [46] MANIE S, 1993, J BIOL CHEM, V268, P13675 [47] MANIOTIS A, 1997, IN PRESS P NATT ACAD [48] MANIOTIS A, 1997, UNPUB J CELL BIOCH [49] MCNAMEE HP, 1993, J CELL BIOL, V121, P673 [50] MCNAMEE HP, 1996, EXP CELL RES, V224, P116 [51] MIYAMOTO S, 1995, SCIENCE, V267, P883 [52] MOONEY DJ, 1994, MOL BIOL CELL, V5, P1281 [53] MOONEY DJ, 1995, J CELL SCI, V108, P2311 [54] PIENTA KJ, 1991, CRIT REV EUKAR GENE, V1, P355 [55] PIENTA KJ, 1991, MED HYPOTHESES, V34, P88 [56] PLOPPER GE, 1995, MOL BIOL CELL, V6, P1349 [57] POPOVA JS, 1994, J BIOL CHEM, V269, P21748 [58] PRASAD ARS, 1993, CIRC RES, V72, P827 [59] RATHKE PC, 1979, EUR J CELL BIOL, V19, P40 [60] RESNICK N, 1993, P NATL ACAD SCI USA, V90, P4591 [61] SADOSHIMA J, 1992, P NATL ACAD SCI USA, V89, P9905 [62] SADOSHIMA J, 1993, CELL, V75, P977 [63] SCHIRO JA, 1991, CELL, V67, P403 [64] SCHMIDT CE, 1993, J CELL BIOL, V123, P977 [65] SHEETZ MP, 1992, CELL MOTIL CYTOSKEL, V22, P160 [66] SIMS JR, 1992, J CELL SCI, V103, P1215 [67] SINGHVI R, 1994, SCIENCE, V264, P696 [68] STAMENOVIC D, 1996, IN PRESS J THEOR BIO [69] SUKHAREV SI, 1993, BIOPHYS J, V65, P177 [70] THOUMINE O, 1995, EXP CELL RES, V219, P427 [71] URRY DW, 1992, PROG BIOPHYS MOL BIO, V57, P23 [72] VANDENBURGH HH, 1995, J CELL PHYSIOL, V163, P285 [73] WANG N, 1993, SCIENCE, V260, P1124 [74] WANG N, 1994, BIOPHYS J, V66, P2181 [75] WANG N, 1995, BIOCH CELL BIOL, V73, P1 [76] WATSON GM, 1992, EXP CELL RES, V198, P8 [77] WAYNE R, 1992, J CELL SCI, V101, P611 [78] WILSON E, 1995, J CLIN INVEST, V96, P2364 [79] YOSHIDA M, 1996, J CELL BIOL, V133, P445 |
Enter PubMed | Enter ISI Web of Science |